整个幻灯片图像(WSI)分类是诊断和治疗疾病的基本任务;但是,精确标签的策划是耗时的,并限制了完全监督的方法的应用。为了解决这个问题,多个实例学习(MIL)是一种流行的方法,它仅使用幻灯片级标签作为一个弱监督的学习任务。尽管当前的MIL方法将注意机制的变体应用于具有更强模型的重量实例特征,但注意力不足是对数据分布的属性的不足。在这项工作中,我们建议通过使用Max-Instance(关键)功能的统计数据来重新校准WSI袋(实例)的分布。我们假设在二进制MIL中,正面袋的特征幅度大于负面,因此我们可以强制执行该模型,以最大程度地利用公制特征损失的袋子之间的差异,该袋子将正面袋模型为未分布。为了实现这一目标,与使用单批训练模式的现有MIL方法不同,我们建议平衡批次采样以有效地使用功能丢失,即同时(+/-)袋子。此外,我们采用编码模块(PEM)的位置来建模空间/形态信息,并通过变压器编码器通过多头自我注意(PSMA)进行汇总。现有基准数据集的实验结果表明我们的方法是有效的,并且对最先进的MIL方法有所改善。
translated by 谷歌翻译
We consider the end-to-end abstract-to-title generation problem, exploring seven recent transformer based models (including ChatGPT) fine-tuned on more than 30k abstract-title pairs from NLP and machine learning venues. As an extension, we also consider the harder problem of generating humorous paper titles. For the latter, we compile the first large-scale humor annotated dataset for scientific papers in the NLP/ML domains, comprising almost 2.5k titles. We evaluate all models using human and automatic metrics. Our human evaluation suggests that our best end-to-end system performs similarly to human authors (but arguably slightly worse). Generating funny titles is more difficult, however, and our automatic systems clearly underperform relative to humans and often learn dataset artefacts of humor. Finally, ChatGPT, without any fine-tuning, performs on the level of our best fine-tuned system.
translated by 谷歌翻译
Diffusion-based generative models have achieved remarkable success in image generation. Their guidance formulation allows an external model to plug-and-play control the generation process for various tasks without fine-tuning the diffusion model. However, the direct use of publicly available off-the-shelf models for guidance fails due to their poor performance on noisy inputs. For that, the existing practice is to fine-tune the guidance models with labeled data corrupted with noises. In this paper, we argue that this practice has limitations in two aspects: (1) performing on inputs with extremely various noises is too hard for a single model; (2) collecting labeled datasets hinders scaling up for various tasks. To tackle the limitations, we propose a novel strategy that leverages multiple experts where each expert is specialized in a particular noise range and guides the reverse process at its corresponding timesteps. However, as it is infeasible to manage multiple networks and utilize labeled data, we present a practical guidance framework termed Practical Plug-And-Play (PPAP), which leverages parameter-efficient fine-tuning and data-free knowledge transfer. We exhaustively conduct ImageNet class conditional generation experiments to show that our method can successfully guide diffusion with small trainable parameters and no labeled data. Finally, we show that image classifiers, depth estimators, and semantic segmentation models can guide publicly available GLIDE through our framework in a plug-and-play manner.
translated by 谷歌翻译
Online ride-hailing services have become a prevalent transportation system across the world. In this paper, we study a challenging problem of how to direct vacant taxis around a city such that supplies and demands can be balanced in online ride-hailing services. We design a new reward scheme that considers multiple performance metrics of online ride-hailing services. We also propose a novel deep reinforcement learning method named Deep-Q-Network with Action Mask (AM-DQN) masking off unnecessary actions in various locations such that agents can learn much faster and more efficiently. We conduct extensive experiments using a city-scale dataset from Chicago. Several popular heuristic and learning methods are also implemented as baselines for comparison. The results of the experiments show that the AM-DQN attains the best performances of all methods with respect to average failure rate, average waiting time for customers, and average idle search time for vacant taxis.
translated by 谷歌翻译
Go-Explore achieved breakthrough performance on challenging reinforcement learning (RL) tasks with sparse rewards. The key insight of Go-Explore was that successful exploration requires an agent to first return to an interesting state ('Go'), and only then explore into unknown terrain ('Explore'). We refer to such exploration after a goal is reached as 'post-exploration'. In this paper, we present a clear ablation study of post-exploration in a general intrinsically motivated goal exploration process (IMGEP) framework, that the Go-Explore paper did not show. We study the isolated potential of post-exploration, by turning it on and off within the same algorithm under both tabular and deep RL settings on both discrete navigation and continuous control tasks. Experiments on a range of MiniGrid and Mujoco environments show that post-exploration indeed helps IMGEP agents reach more diverse states and boosts their performance. In short, our work suggests that RL researchers should consider to use post-exploration in IMGEP when possible since it is effective, method-agnostic and easy to implement.
translated by 谷歌翻译
Knowledge graphs, modeling multi-relational data, improve numerous applications such as question answering or graph logical reasoning. Many graph neural networks for such data emerged recently, often outperforming shallow architectures. However, the design of such multi-relational graph neural networks is ad-hoc, driven mainly by intuition and empirical insights. Up to now, their expressivity, their relation to each other, and their (practical) learning performance is poorly understood. Here, we initiate the study of deriving a more principled understanding of multi-relational graph neural networks. Namely, we investigate the limitations in the expressive power of the well-known Relational GCN and Compositional GCN architectures and shed some light on their practical learning performance. By aligning both architectures with a suitable version of the Weisfeiler-Leman test, we establish under which conditions both models have the same expressive power in distinguishing non-isomorphic (multi-relational) graphs or vertices with different structural roles. Further, by leveraging recent progress in designing expressive graph neural networks, we introduce the $k$-RN architecture that provably overcomes the expressiveness limitations of the above two architectures. Empirically, we confirm our theoretical findings in a vertex classification setting over small and large multi-relational graphs.
translated by 谷歌翻译
We present Camelira, a web-based Arabic multi-dialect morphological disambiguation tool that covers four major variants of Arabic: Modern Standard Arabic, Egyptian, Gulf, and Levantine. Camelira offers a user-friendly web interface that allows researchers and language learners to explore various linguistic information, such as part-of-speech, morphological features, and lemmas. Our system also provides an option to automatically choose an appropriate dialect-specific disambiguator based on the prediction of a dialect identification component. Camelira is publicly accessible at http://camelira.camel-lab.com.
translated by 谷歌翻译
The ability to associate touch with sight is essential for tasks that require physically interacting with objects in the world. We propose a dataset with paired visual and tactile data called Touch and Go, in which human data collectors probe objects in natural environments using tactile sensors, while simultaneously recording egocentric video. In contrast to previous efforts, which have largely been confined to lab settings or simulated environments, our dataset spans a large number of "in the wild" objects and scenes. To demonstrate our dataset's effectiveness, we successfully apply it to a variety of tasks: 1) self-supervised visuo-tactile feature learning, 2) tactile-driven image stylization, i.e., making the visual appearance of an object more consistent with a given tactile signal, and 3) predicting future frames of a tactile signal from visuo-tactile inputs.
translated by 谷歌翻译
The task of motion forecasting is critical for self-driving vehicles (SDVs) to be able to plan a safe maneuver. Towards this goal, modern approaches reason about the map, the agents' past trajectories and their interactions in order to produce accurate forecasts. The predominant approach has been to encode the map and other agents in the reference frame of each target agent. However, this approach is computationally expensive for multi-agent prediction as inference needs to be run for each agent. To tackle the scaling challenge, the solution thus far has been to encode all agents and the map in a shared coordinate frame (e.g., the SDV frame). However, this is sample inefficient and vulnerable to domain shift (e.g., when the SDV visits uncommon states). In contrast, in this paper, we propose an efficient shared encoding for all agents and the map without sacrificing accuracy or generalization. Towards this goal, we leverage pair-wise relative positional encodings to represent geometric relationships between the agents and the map elements in a heterogeneous spatial graph. This parameterization allows us to be invariant to scene viewpoint, and save online computation by re-using map embeddings computed offline. Our decoder is also viewpoint agnostic, predicting agent goals on the lane graph to enable diverse and context-aware multimodal prediction. We demonstrate the effectiveness of our approach on the urban Argoverse 2 benchmark as well as a novel highway dataset.
translated by 谷歌翻译
In recent years, graph neural networks (GNNs) have emerged as a promising tool for solving machine learning problems on graphs. Most GNNs are members of the family of message passing neural networks (MPNNs). There is a close connection between these models and the Weisfeiler-Leman (WL) test of isomorphism, an algorithm that can successfully test isomorphism for a broad class of graphs. Recently, much research has focused on measuring the expressive power of GNNs. For instance, it has been shown that standard MPNNs are at most as powerful as WL in terms of distinguishing non-isomorphic graphs. However, these studies have largely ignored the distances between the representations of nodes/graphs which are of paramount importance for learning tasks. In this paper, we define a distance function between nodes which is based on the hierarchy produced by the WL algorithm, and propose a model that learns representations which preserve those distances between nodes. Since the emerging hierarchy corresponds to a tree, to learn these representations, we capitalize on recent advances in the field of hyperbolic neural networks. We empirically evaluate the proposed model on standard node and graph classification datasets where it achieves competitive performance with state-of-the-art models.
translated by 谷歌翻译